6100 Donner Road
Lockport, NY 14094
Phone: (716) 625-4227
Fax: (716) 625-4228
e-mail: sales@jmcanty.com

Lab Test Report
 13 November 2002

Company:

Copper Mining Facility

Contacts:

Canty Lab Contacts: Chris Marks (chrism@JMCanty.com), Dick Owen (dicko@JMCanty.com)
Sample Identity- The sample materials are Rougher Feed materials collected from the head courier flow-cell tube under three conditions: Normal, Course, fine.

Table 1, Sample identification

Canty Log Number
19322-285-58-1
19322-285-58-2
19322-285-58-3 Rougher feed bag C-copper ore - 6.175 pounds fine

Purpose: This report details the Particle Size testing done in the Canty Lab for the above samples.
A dilute concentration slurry was prepared with approximately 100 grams of each dry powder added to 2 gallons of water. This same slurry was passed through the flow cell several times and data gathered for 20,000 to 30,000 particles indicating the size distribution for the sample. The degree of repeatability of the measurement process is indicated by comparison of data sets for the same sample, and the ability to distinguish between samples is indicated by comparison between samples.

Results: A typical process image and the CantyVision processing results are shown below to indicate the general measuring process. Following are plots of each of the data sets along with a summary comparison showing the D10, D50, D90 ($10,50,90$ percent passing size) statistics.

Figure 1, Typical product image from flow cell camera with 1.76 mm horizontal field of view

Figure 2 , CantyVision extracts particle size data from image in Figure 1. This screen is interactive allowing user to click on selected particle (yellow box in image) and the measured information is moved to the top of the table at the right.

Measurement data plots are presented below that indicate the percent passing by minor axis for several runs for each of the three sample materials. Table 2 (parts A, B, and C) show a summary for the several plots of each of the test materials.

Table 2A, 2B, and 2C show a summary comparing the three materials at the 10 percent, 50 percent and 90 percent passing minor axis size.

TABLE 2A
Minor axis Percent passing
by volume

TABLE 2B
Minor axis Percent passing by volume

Coarse run				
	1	10%	50%	90%
	15.55	34.14	74.3	
	2	19.25	76.68	482
	3	16.5	41.14	99.93
4	16.3	37	101.7	
	16.5	43.62	100.2	
	16.5	46.62	122.5	

mean	16.76667	46.53333	163.4383
std dev	1.271089	15.43298	156.8102

TABLE 2C
Minor axis Percent passing
by volume

FINE run	10\%	50\%	90\%
	13.75	30.1	63.13
	14.42	32.6	80.83
	13.75	31.54	76.35
	12.66	28.03	56.98
	11	24.53	48.75
	11	24.14	46.59
	11	23.73	53.23

mean	12.51143	27.81	60.83714
std dev	1.504775	3.719839	13.33821

Four size distribution runs for the Normal Ro Feed sample

Six size distribution runs for the Coarse Ro Feed sample

Seven size distribution runs for the Fine Ro Feed sample

Discussion: Table 2 shows the Canty vision based measurements of the minor axis size at 10,50 , and 90 percent passing. The three materials have the most distinguishing difference at the 90 percent passing point. The individual runs are reporting the size characteristic for approximately 30,000 particles and when the same material is run again the measured value for a given percent passing is somewhat different. The mean of the several runs can be compared for the three materials. For the coarse material, the mean minor axis is 163 micron at 90 percent passing compared to 90 micron for the normal material and 60 micron for the fine material. It should be noted that the coarse material has more variation from run to run as indicated by the ratio of std dev (standard deviation) to the mean. The camera video was observed during each run providing visual verification of the general results. During the coarse material run several 'large particles' were seen passing the camera. The log normal size distribution expected for many grinding processes has a wide size range that extends with a low count far into the large size range. The data obtained for the coarse material is more representative of the log normal distribution than the others. The low count of these large particles causes a relative wide range in the measured data.

Conclusion: The Canty vision based measurement does make repeatable measurements of the range of Ro Feed materials provided in the three samples. The Canty measured D90 minor axis size is an effective indicator to use for grinding process control. A working control system for size control will require an effective sampling system to extract representative materials from the process and a dilution system to reduce the particle concentration to a useable level.

