
Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

Mapping process-product relations by ensemble regression—A granulation 

case study

Line Koleilat a, Langdon Feltner b, Donovan Stumpf b, Paul Mort b,∗

a Purdue University, Department of Agricultural and Biological Engineering, West Lafayette, 47907, IN, USA
b Purdue University, School of Materials Engineering, West Lafayette, 47907, IN, USA

a r t i c l e  i n f o

Keywords:
Multi-effect regression
Image analysis
Size and shape characterization
Fluid bed granulation
Product/process mapping
Model-based optimization

 a b s t r a c t

Measurement and control of product-process relations are important for particulate products and processes, es-
pecially with respect to distributed product specifications, for example size and shape distributions. This paper 
shares an ensemble regression technique for linking process parameters with distributed granule size and shape 
characteristics obtained by dynamic image analysis. A case study of fluidized bed granulation is presented, linking 
process effects (inlet air flow, air temperature, binder spray rate, and binder content) with product attributes. 
The process was bounded using stable operating criteria defined by balancing wet binder addition with dry-
ing enthalpy of the fluidization airflow. Detailed mapping of size and shape trends were obtained using the 
regression of fully distributed image analysis data obtained from only a few pilot-scale runs, the key enabler 
being the simultaneous use of distributed size and shape data with process parameters in an ensemble regres-
sion model. Results suggest opportunities for optimization linking process and product objectives. More broadly, 
the methodology suggests opportunities for improved product/process modeling with distributed size and shape
data.

1.  Introduction

The ability to monitor and control particulate processes has ad-
vanced with the development of measurement technologies able to cap-
ture details of size and shape features, for example, dynamic image anal-
ysis (DIA) methods able to characterize particles in a flowing stream. Yet 
the reporting of these rich datasets is often reduced to only a few de-
scriptive statistics, for example a mean size or selected percentiles in a 
distribution, e.g., 𝐷10, 𝐷50, 𝐷90. This degree of data reduction limits the 
utility of the data for trend-wise analyses, for example mapping product-
process relations. This paper uses a case study linking granulation pro-
cess parameters with product characteristics within thermodynamic pro-
cess constraints. Rather than predicting granule characteristics with a 
dynamic model, for example, according to population balances (Gantt 
and Gatzke, 2005; Braumann et al., 2007), the current approach uses 
an ensemble regression approach to correlate process parameters with 
experimental measurements of size and shape distributions.

Historically, response surface methods have been used to evaluate 
the effects of key process parameters, for example the effects of binder 
flow rate and inlet air temperature on granule and tablet properties in 
top-spray fluidized bed granulation (Lipps and Sakr, 1994). Findings 
highlight the utility of quadratic regression models in capturing complex 
interactions between process variables and critical quality attributes like 
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granule size, density, and drug release, with implications for optimiz-
ing pharmaceutical granulation and tableting. While reasonably good 
predictions for first-order distribution metrics such as geometric mean 
granule size were reported, poorer fits were noted for second-order 
metrics such as geometric standard deviation. Specifically, regression 
models for distribution spread often failed to reach statistical signifi-
cance or showed low explanatory power, highlighting a limitation of 
the quadratic response surface methodology in capturing particle size 
distributions. This suggests that while the modeling approach could de-
scribe average trends effectively, it was less capable of accounting for 
distributions, possibly due to the limited number of input variables or 
the inherent complexity of granule growth mechanisms.

Modern machine learning approaches are rife with paths to better 
utilize high-resolution, distribution-level data, and have been applied 
extensively to predicting manufacturing process outcomes. Schmitt et al. 
(2022) created an ensemble machine learning model to predict dried 
particle size as a function of operational parameters across pilot and pro-
duction scale spray dryers, achieving prediction errors between −7.7%
and 18.6%. Oishi et al. (2020) applied Elastic Net regression with in-
teraction terms to a high-dimensional dataset of 44 tablet formula-
tions spanning six granulation methods, using 12 material attributes and 
one process parameter per sample. Their approach, like ours, leveraged 
data-rich inputs to model product–process relationships, but they noted
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reduced interpretability with many interaction terms and limited gener-
alizability due to a fixed formulation and single active pharmaceutical 
ingredient.

These limitations highlight the need for models that integrate de-
tailed, high-resolution, product data with robust and interpretable 
statistics, i.e., the ability to make stable predictions under data-scarce
conditions or modest extrapolation while maintaining explicit linkages 
between process parameters and product features. In this work, we de-
fine “resolution” as the use of scalar size and shape metrics assessed on 
the individual granule level, rather than as a spatial or closure-based 
modeling resolution. Building on these developments, our approach 
combines the distribution-level richness of modern particle character-
ization with ensemble regression techniques that maintain these desir-
able properties while accommodating limited experimental trials.

We present an example of ensemble linear regression analysis link-
ing distributed granule size and shape data with process parameters in 
fluidized bed granulation (FBG). The case study has a limited num-
ber of pilot-scale process runs that roughly explored the process de-
sign space without a strict design-of-experiment methodology. Products 
from a subset of runs were selected based on process stability (i.e., well-
controlled fluidization and process yield) and characterized using dy-
namic image analysis (DIA). Compound weighted regression was used 
to fit the data to lognormal models, and extended to an ensemble re-
gression, combining the detailed size and shape data with their process 
parameters. This ensemble regression enabled statistical fitting of multi-
ple process parameters and their interactions with only a limited number 
of process trials. The result is a detailed relational model that leverages 
the wealth and resolution of the granule size and shape data.

2.  Granulation case study

Powder granulation is commonly done to achieve and maintain mix-
ing uniformity, improve flowability, facilitate compaction, and manage 
derivative product performance for various applications, for example, 
dispersion, dissolution and controlled release (Ennis et al., 1991; Iveson 
et al., 2001; Litster and Ennis, 2004; Rowe and Roberts, 1995; Kris-
tensen and Schaefer, 1987; Rough et al., 2005; Sivarao et al., 2014; 
Liu et al., 2021). Whether for pharmaceutical, consumer goods, agri-
cultural bio-processing, ceramic, or other material applications, it is 
frequently desired to map the relationships between granule attributes 
and process parameters in context of stable operation, i.e., a process 
design space. Regime mapping has an analogous objective, describing 
product-process relations across a broader range of processes and for-
mulations. Although somewhat qualitative, regime maps aim to provide 
useful guidance for granulation based on physical mechanisms and ma-
terial properties (Hapgood et al., 2003; Iveson et al., 2001; Kumar et al., 
2016; Pohl and Kleinebudde, 2020; Kastner et al., 2013). In this case 
study, we narrow the focus to a specific formulation/process space and 
consider the effective use of experimental data for quantitative mapping 
of product-process relations.

Empirical mapping of product characteristics to process parameters 
requires sufficient data for rigorous statistical analysis (Kayrak-Talay 
and Litster, 2011; Kayrak-Talay et al., 2013; Veliz Moraga et al., 2015; 
Dan et al., 2024). Executing granulation experiments and/or collecting 
representative samples from a running granulation process can be chal-
lenging. Sample analysis typically involves data reduction, converting 
distributed data to descriptors such as a geometric mean size (𝑑𝑔) and 
standard deviation (𝜎𝑔), or more simply a median with quantiles, e.g., 
𝐷10, 𝐷50, 𝐷90. Drawing conclusions from such reduced data requires 
larger numbers of samples and even replicate experiments.

This communication considers direct analysis of fully distributed 
data as an effective approach to mapping distributed characteristics with 
limited process data. Quantitative trends in size and shape are mapped 
in terms of lognormal distribution descriptors obtained from weighted 
multi-effect linear regression of distributed data. The resulting maps 
are quantitative and show trends that relate the parameters of the FBG

process to the geometric mean and standard deviations of granule size 
and shape features. Direct analysis of the distributed data avoids the 
data-loss associated with intermediate data reduction, provides a more 
efficient use of that data, and albeit empirical, enables more insight-
ful use of the results by way of a quantitative product-process model. 
While the current study relies on empirical mapping of process-product 
relations, a reasonable next step can extend the approach to a dynamic 
flowsheet or digital twin model, for example using population balance 
equations describing growth (Braumann et al., 2007; Dan et al., 2024), 
and in more advanced instances, morphology of granules.

3.  Experimental approach

Granules were prepared using a proxy pharmaceutical formulation 
of lactose monohydrate (200 mesh, Foremost Farms NF grade, Baraboo, 
WI, USA), microcrystalline cellulose (MCC, Avicel PH101, FMC Corp., 
Philadelphia, PA, USA), and a 25% aqueous binder solution prepared 
using polyvinylpyrrolidone (Plasdone K-30, Ashland Chemical, Wilm-
ington, DE, USA) powder dissolved in distilled water. Granules were pro-
duced using a pilot-scale bottom spray fluidized bed granulation system, 
the SolidLab 2 (SL2) Fluidized Bed Granulation System (Hüttlin GmbH, 
Syntegon Company, Schopfheim, Germany).

Six runs were performed within a stable operating space balancing 
the binder spray input with drying enthalpy. All runs transferred a pre-
mix of 2.55 kg lactose monohydrate and 0.30 kg microcrystalline cellu-
lose into the SL2 where it was fluidized and granulated using a binder 
spray. The binder was sprayed using air-atomized nozzles with stan-
dard air cap configuration (2.3mm) and 0.8 bar atomizing air pressure. 
Filter bag blowback pressure was constant at 3.2–3.5 bar, with the ex-
ception of run D where it was marginally increased to compensate for 
the build-up of elutriated powder at higher airflow conditions. Process 
and binder formulation parameters are summarized in Table 1. Note 
the air temperature was adjusted (𝑇𝑠𝑙𝑜𝑡 instead of 𝑇𝑖𝑛𝑙𝑒𝑡) to compensate 
for thermal losses in the system, occurring primarily between the inlet 
air control thermocouple and the slots in the distributor plate (Koleilat 
et al., 2024).

The control of the FBG process is summarized in Fig. 1, where mois-
ture content in the granulation process (Fig. 1a) was predicted using a 
mass and energy balance (Koleilat et al., 2025) and compared to the 
peak values measured experimentally via mass balance only (Fig. 1b). 
The 𝑆𝑂𝑅 indicates a stable operating range for granulation based on 
having good agreement between the predictive model and experimental 
data, i.e., between about 7.5% and 11% peak moisture. While spraying 
the binder, the rate of moisture addition exceeds the drying rate associ-
ated with the heated airflow; the resultant increase in product moisture 
is associated with granulation. The product moisture reaches a peak at 
the end of the spray segment and then declines during drying. The peak 
moisture is an indicator of granule growth and must be balanced to 
maintain process stability in relation to the material properties—if the 
peak is too low, insufficient granulation may result in a dusty product; if 
the peak is too high, fluidization may be compromised, destabilizing the 

Table 1 
Summary of formulations and spray-segment process parameters used in 
each run. All runs used a 25% aqueous PVP binder solution. The same 
parameters were used in the drying segment in all cases except run F 
where airflow was reduced to 90m3/h during drying.
    Run  Binder  PVP%  Spray rate  Airflow  Superficial  Inlet  Slot  
  soln,  dry basis  g/min  m3/h  velocity  T, ◦C  T, ◦C 
  kg  (PVP)  (SR)  (AF)  m/s  (T)  
  A  0.67  5.5%  50  90  0.35  90  70.1  
  B  0.80  6.6%  50  100  0.39  80  63.7  
  C  0.80  6.6%  50  80  0.31  85  65.6  
  D  0.80  6.6%  50  130  0.53  60  50.2  
  E  0.60  5.0%  50  90  0.35  65  52.0  
  F  0.60  5.0%  72  120  0.47  65  53.5  
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Fig. 1. Accumulated moisture in the fluid bed granulation process: a) predictive 
calculation using an enthalpy balance; b) parity plot with the measured peak 
moisture.

Fig. 2. Image analysis of a single granule: a) grayscale image overlaid (in color: 
orange=edges, blue=corners) to show pixels at the perimeter threshold; b) 
feature analysis including area, perimeter, and length measures.

process. Many studies have used accumulated moisture as a control for 
granulation (Saxena et al., 1979; Ochsenbein et al., 2019; Askarishahi 
et al., 2019).

3.1.  Granule analysis

Granule products were characterized using dynamic image analysis 
(DIA) and analyzed for size and shape features. Samples from the fluid 
bed granulator were obtained by sequential riffling the full product from 
the FBG process, reducing the 3 kg batch to small (∼ 5 g) samples suit-
able for DIA. The DIA system (SolidSizer, JM Canty, Lockport, NY, USA) 
has a controlled vibratory feed of dry granules, which then fall by grav-
ity between a telecentric lens camera and an LED backlight. The camera 
magnification was set to 10µm/pixel. Digital images of the back-lit par-
ticle projections were collected and analyzed using LabView NI-Vision 
(National Instruments, Austin, TX, USA). In Fig. 2, a grayscale image 
(8-bit grayscale, 0=black; 255=white) is overlaid with colored pixels 
indicating the perimeter threshold (214): orange indicates pixels with at 
least one edge on the perimeter; blue indicates pixels with at least one 
corner on the perimeter. The minimum Feret, 𝑥𝐹𝑚𝑖𝑛, and its orthogonal, 
𝑥𝐿𝐹 , are shown by the sides of the bounding box (blue) defined by 𝑥𝐹𝑚𝑖𝑛. 
The area, 𝐴, and perimeter, 𝑃 , are shown along with the area-equivalent 
circle (red).

The projected area-equivalent size, 𝑥𝐴 =
√

(4𝐴∕𝜋), and Form Fac-
tor, 𝐹𝐹 = 4𝜋𝐴∕𝑃 2 , are standard measures used to describe particle size 
and shape, respectively (International Standards Organization 9276-6, 
2008). 𝐹𝐹  is a lumped shape metric that is sensitive to both elonga-
tion and perimeter irregularity, making it a logical choice for a compre-
hensive shape descriptor (Feltner et al., 2023). 𝐹𝐹  is bounded within 
(0, 1], limiting the choice of distributions that can accurately capture 
the metric, for example truncated normal. We define an Inverse Form 
Factor, 𝑖𝐹𝐹 = (1 − 𝐹𝐹 )∕𝐹𝐹 , as a transformation that maps 𝑖𝐹𝐹  onto 
(0,∞), where 𝑖𝐹𝐹 = 0 corresponds to a perfect circle. Since 𝑙𝑛(𝑖𝐹𝐹 ) is 

Fig. 3. Binning based on cumulative volume, 𝑉 = (𝜋∕6)𝑥3𝐴, using quantile incre-
ments of run C data fitted using lognormal distributions: a) area equivalent size, 
𝑥𝐴; b) modified Form Factor, 𝑖𝐹𝐹 = (1 − 𝐹𝐹 )∕𝐹𝐹 . In lower plots with color, 
orange data points (binned, 𝑐𝐹 ) are connected by linear interpolation segments 
and overlaid by blue lognormal fits, 𝑐𝑑𝑓 .

unbounded, it is compatible with continuous distribution functions, such 
as the lognormal applied in this work.

3.2.  Distribution analysis

Typical DIA characterization includes data sets having thousands 
of particles imaged in random orientations in a dilute flow between 
a high-speed camera and [strobe-pulsed] backlight. There are various 
approaches to statistical analysis of these data, for example direct sam-
pling approaches using statistical bootstrapping (Matsuyama, 2018). In 
the current work, data were sorted by the feature of interest, then clas-
sified into bins according to a scaled progression. Bins may be classified 
according to increments along the feature axis or the cumulative dis-
tribution axis. For consistency, volume-based bin increments were used 
throughout this paper. Fig. 3 illustrates binning based on quantile in-
crements of the cumulative distribution data from run C; for graphical 
clarity, a total of 17 bins were equally spaced on 10% increments across 
the center of the distribution (20 to 80%), with progressively smaller 
increments representing the fine and coarse tails. In later ensemble anal-
yses, higher binning resolution was used with 5% increments across the 
center of the distribution, resulting in about 30 bins/sample.

While it is common in the literature to find size distribution data ex-
pressed in reduced form as interpolated quantiles (𝐷10, 𝐷50, 𝐷90) and 
𝑆𝑝𝑎𝑛 = (𝐷90 −𝐷10)∕𝐷50, these metrics are only marginally descriptive 
and are not sufficient for detailed modeling. On the other hand, fitted 
distribution functions (e.g., lognormal and stretched-exponential being 
the two most common) provide more useful reduced-order representa-
tions of distributed characteristics. The same statistical approach can be 
applied to shape distributions.

In the current work, measured size and shape data are described us-
ing lognormal distribution functions (Mort, 2023). For a given size or 
shape feature, binned data, 𝑦 = 𝑙𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒), are regressed against their 
cumulative probabilities, 𝑥 = 𝑐𝑃 =

√

2 ⋅ 𝑒𝑟𝑓𝑖𝑛𝑣(2 ⋅ 𝑐𝐹 − 1), where 𝑐𝑃  is 
the cumulative probability transform of the cumulative fractional data, 
𝑐𝐹 , evaluated within the domain (0,1). The result of the regression of 
𝑦 on 𝑥 data is a cumulative probability function, 𝑐𝑝𝑓 = 𝑙𝑛(𝑑∕𝑑𝑔)∕𝑙𝑛(𝜎𝑔), 
with the geometric mean, 𝑑𝑔 , defined by the regression intercept, i.e., 
at 𝑐𝑝𝑓 = 0; and the geometric standard deviation, 𝜎𝑔 , defined by the 
slope of the regression. The values of 𝑐𝑝𝑓 indicate the number of geo-
metric standard deviations away from the mean. Note that compound
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Fig. 4. Size and shape mapping of fluid bed granules: grayscale contours show 
volume-based density; blue traces are perimeter outlines of representative gran-
ules.

weighting is required to minimize residuals with respect to the cumu-
lative distribution function, 𝑐𝑑𝑓 = (1 + 𝑒𝑟𝑓 (𝑐𝑝𝑓∕

√

2))∕2, i.e., minimiza-
tion of Σ(𝑐𝑑𝑓 − 𝑐𝐹 )2 (Mort, 2023; Kottler, 1950).

To exemplify lognormal fitting, the continuous 𝑐𝑑𝑓 function can be 
easily compared with interpolated values; for the example of run C in 
Fig. 3 having a geometric mean, 𝑑𝑔𝑉 = 302 µm, the size (𝑥𝐴) at +1𝜎
is 𝐷84.1 ≈ exp(𝑙𝑛(𝑑𝑔𝑉 ) + 𝑙𝑛(𝜎𝑔)) = 471 µm, and the +2𝜎 size is 𝐷97.7 ≈
exp(𝑙𝑛(𝑑𝑔𝑉 ) + 2𝑙𝑛(𝜎𝑔)) = 735 µm. The 90th quantile, 𝐷90, is at +1.28𝜎𝑔 , 
i.e., 𝐷90 ≈ exp(𝑙𝑛(𝑑𝑔𝑉 ) + 1.28𝑙𝑛(𝜎𝑔)) = 534 µm, in this case marginally 
higher than the interpolated value, visible by close inspection of Fig. 3a.

The same statistical approach was used to fit the distributed shape 
data. Note that the modified form factor, 𝑖𝐹𝐹 , provides a well-matched 
fit to the lognormal distribution in Fig. 3b. Supplemental materials in-
clude image analysis data for all 6 runs along with binned ensemble 
datasets for the size and shape analyses shared in this report.

3.3.  Multi-feature mapping

This section describes concurrent mapping of size and shape features 
on a per-run (i.e., per-sample) basis. It is useful to visualize how granule 
growth affects morphology. Fig. 4 is a map showing size on the abscissa 
and the shape on the ordinate for run C; the grayscale contours represent 
the volume-basis density of particles characterized by DIA in this sample 
(number of particles, 𝑁 = 21, 808). Perimeter traces (in blue) are over-
laid to graphically illustrate the approximate size and shape of particles 
at various locations in the map. While not relating directly to the effect 
of process parameters, this style of mapping is a useful visualization of 
distributed granule characteristics.

Comparative mapping with fitted distributions is illustrated in Fig. 5, 
having contour overlays for two samples, runs C and D. The contour map 
(Fig. 5a) shows the interpolated density in geometric increments. The 
linear regression plots (Fig. 5b and c) show lognormal fitting against the 
cumulative probability, 𝑐𝑝𝑓 . In this case, regressions were done inde-
pendently for each sample. While both samples have similar geometric 
mean values, their distribution breadths are different, with run C be-
ing more narrowly distributed in both size and shape. Graphically, the 
breadth is indicated by the reciprocal slope of the regression.

3.4.  Multi-effect analysis using ensemble regression

Regression fitting of individual data sets was extended to multi-effect 
ensemble regression including process parameters in the FBG case study. 
The graphical convention of Fig. 3, representing feature values on the 

Fig. 5. Size and shape map with data reduced to density contours and distri-
bution fitting using lognormal weighted regression. Two samples are shown in 
color: blue (C) and orange (D), having similar means (zero-cpf intercepts, 𝑑𝑔𝑉 ) 
and different distribution breadths (slopes, 1∕𝜎𝑔).

abscissa and cumulative distributions (𝑐𝑑𝑓 , 𝑐𝑝𝑓 ) on the ordinate, is in-
verted, predicting the scalar feature of interest, 𝑦 = 𝑙𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒), as a 
function of a matrix of process parameters, 𝑿, and the cumulative prob-
ability, 𝑐𝑃 , associated with the feature distribution. In the case of size, 
the feature of interest is made dimensionless, dividing by a unit mea-
sure, i.e., microns. Shape features are dimensionless by definition. The 
model can be expressed in matrix form, where 𝑨 is the coefficient vector 
governing the log of the geometric mean, 𝑙𝑛(𝑑𝑔𝑉 ∕𝜇𝑚) = 𝑨⊤𝑿, and 𝑩 is 
the coefficient vector governing the log of the geometric standard de-
viation 𝑙𝑛(𝜎𝑔) = 𝑩⊤𝚫𝑿. The overall predicted value at any cumulative 
probability 𝑐𝑃  is given by:
𝑦 = 𝑨⊤𝑿 + 𝑐𝑃 × (𝑩⊤𝚫𝑿)

𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐴𝐹
𝑇

𝑃𝑉 𝑃
𝑆𝑅

(𝐴𝐹 − 𝐴𝐹 )(𝑇 − 𝑇̄ )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝚫𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐴𝐹 − 𝐴𝐹
𝑇 − 𝑇̄

𝑃𝑉 𝑃 − ̄𝑃𝑉 𝑃
𝑆𝑅 − ̄𝑆𝑅

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Here, 𝐴𝐹 , 𝑇 , 𝑃𝑉 𝑃 , and 𝑆𝑅 are the FBG process parameters. The over-
bars (e.g., 𝐴𝐹 ) indicate the dataset-wide mean for that parameter, en-
suring that interaction terms like (𝐴𝐹 − 𝐴𝐹 )(𝑇 − 𝑇̄ ) are mean-centered.

From a matrix algebra perspective, the ensemble regression model is 
dimensionally consistent. The vectors 𝑨 and 𝑩 have dimension 6 × 1 and 
5 × 1 respectively. Their transposed products with the corresponding in-
put vectors yield scalar outputs for both 𝑙𝑛(𝑑𝑔𝑉 ∕𝜇𝑚) and 𝑙𝑛(𝜎𝑔), ensuring 
that the final prediction, 𝑦, is also scalar-valued. Each remaining entry 
in 𝑨 must have reciprocal units of its corresponding input in 𝑿, such 
as 𝐴𝐹−1, 𝑇 −1, etc., such that their product yields a dimensionless argu-
ment to the logarithm. Likewise, the coefficients in 𝑨 must carry units 
reciprocal to those in 𝚫𝑿, ensuring that 𝑩⊤𝚫𝑿 remains dimensionless, 
and the full expression 𝑐𝑃 × (𝑩⊤𝚫𝑿) is a valid logarithmic offset.

By including the 𝑐𝑃  term in the regression model, the ensemble 
method is able to integrate process parameters with rich, distribution-
level data. The 𝑐𝑃  term accesses the ∼ 30 binned data points per sample, 
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Table 2 
Comparison of distribution fitting, independent (per run) and multi-effect (en-
semble, combined runs) for size and shape features.
    Independent, per run  Multi-effect, ensemble
  Run  Size, 𝑥𝐴  Shape, 𝑖𝐹𝐹  Size, 𝑥𝐴  Shape, 𝑖𝐹𝐹

 𝑑𝑔𝑉 , µm 𝜎𝑔 𝑖𝐹𝐹𝑔𝑉 𝜎𝑔 𝑑𝑔𝑉 , µm 𝜎𝑔 𝑖𝐹𝐹𝑔𝑉 𝜎𝑔  
  A  221  1.67  0.32  1.99  218  1.69  0.32  2.00 
  B  255  1.67  0.31  1.87  250  1.67  0.31  1.85 
  C  302  1.56  0.25  1.73  300  1.57  0.25  1.75 
  D  285  1.74  0.24  1.92  280  1.76  0.24  1.94 
  E  249  1.56  0.22  1.92  248  1.55  0.22  1.92 
  F  249  1.71  0.20  1.89  249  1.71  0.20  1.90 

Table 3 
Size, 𝑥𝐴, and shape, 𝑖𝐹𝐹 , model coefficients obtained from ensemble multi-
effect regression analyses (Fig. 6). 𝐴𝐹  is airflow, m3/h; 𝑇  is slot temperature, 
◦C; 𝑃𝑉 𝑃  is the fractional amount of binder in the dry-basis formulation; 
𝑆𝑅 is the spray rate of the 25% PVP binder solution, g/min; and 𝑐𝑃  is the 
cumulative probably transform of the binned data.
    Fit parameters  Fit coefficients (|t-ratio|)
 𝑨  Size: 𝑙𝑛(𝑑𝑔𝑉 ∕𝜇𝑚)  Shape: 𝑙𝑛(𝑖𝐹𝐹𝑔𝑉 )

  Intercept 6.04𝐸 + 0  (233) −3.13𝐸 + 0  (106) 
 𝐴𝐹 −7.48𝐸 − 3 (61) 9.18𝐸 − 3 (66)  
 𝑇 −1.77𝐸 − 2 (73) 2.89𝐸 − 2 (105)  
 𝑃𝑉 𝑃 1.51𝐸 + 1 (70) −2.16𝐸 + 0 (9)  
 𝑆𝑅 7.14𝐸 − 3 (39) −1.33𝐸 − 2 (63)  
 (𝐴𝐹 − 𝐴𝐹 )(𝑇 − 𝑇̄ ) −4.94𝐸 − 4 (35) 6.64𝐸 − 4 (41)  
 𝑩  Size: 𝑙𝑛(𝜎𝑔 )  Shape: 𝑙𝑛(𝜎𝑔 )
 𝑐𝑃 5.07𝐸 − 1 (280) 6.34𝐸 − 1 (307)  
 𝑐𝑃 × (𝐴𝐹 − 𝐴𝐹 ) 3.43𝐸 − 3 (21) 3.07𝐸 − 3 (17)  
 𝑐𝑃 × (𝑇 − 𝑇̄ ) 4.86𝐸 − 3 (13) 4.42𝐸 − 3 (11)  
 𝑐𝑃 × (𝑃𝑉 𝑃 − ̄𝑃𝑉 𝑃 ) −1.43𝐸 + 0 (4.0) −7.70𝐸 + 0 (19)  
 𝑐𝑃 × (𝑆𝑅 − ̄𝑆𝑅) −7.54𝐸 − 4 (2.4) −5.01𝐸 − 3 (14)  

said binned data derived from the DIA reduction of ∼ 20𝑘 granule images 
per sample. The use of compound-weighted linear regression ensures 
that each bin contributes appropriately to the overall model, enabling 
the simultaneous estimation of both distribution mean and spread as 
functions of process parameters.

Ensemble multi-effect regression of the full sample set (runs A-F) in-
cluded the distributed size and shape features from each run as well 
as the airflow, temperature, binder content, and spray rate parameters 
given in Table 1. The results are shown in Fig. 6 as parity plots with 
ANOVA summary statistics (JMP, Version 16.0.0. SAS Institute Inc., 
Cary, NC). The parity plots show excellent predictability over the centers 
of the probability distributions, i.e., within +/- 1 geometric standard 
deviation (the 16th and 84th quantiles), achieved with the compound 
weighed regression; note that divergent points may occur at the tails of 
the distribution (e.g., < 10%, > 90%) which have reduced weighting in 
the regression.

The ensemble fit quality for both size and shape are well aligned 
with individually fitted samples (Table 2), demonstrating that the fitting 
approach is consistent within the explored formulation and operating 
space. The model coefficients for the multi-effect regression (Table 3) 
show the effects of airflow, inlet temperature, binder content, and their 
interactions, including interactions with size and shape distributions. 
Each model has 11 statistically significant coefficients (10 degrees of 
freedom plus the intercept). The t-ratio is a measure of how many stan-
dard errors the regressed coefficients are away from 0; high absolute 
values of the t-ratio indicate high confidence in the statistical signifi-
cance of the associated parameter. All estimates are highly significant, 
i.e., having a statistical probability > |𝑡| < 0.01% in all cases except for 
𝑥𝐴: 𝑐𝑃 × 𝑆𝑅, prob > |𝑡| < 0.2%.

Ensemble regression solves for both product distributions (i.e., 
the 𝑐𝑑𝑓 ) and process parameter effects (airflow, temperature, binder 
amount, and spray rate) simultaneously. The regression intercept along 

Fig. 6. Multi-effect regression and summary of binned data combining runs A-F: 
a) size; b) shape distributions.

with non-𝑐𝑃  terms apply to the geometric mean, and the terms having 𝑐𝑃
dependence apply to the geometric standard deviation. In this example, 
six terms affect geometric means (both size and shape), and five affect 
geometric standard deviations.

3.5.  Model validation

Cross-validation methods are often used when data are insufficient 
to run a train-test split; in this case, its use is motivated by the sparsity 
of process data. A series of holdout splits was applied to the ensemble 
particle size data (ensemble number of bins, 𝑁 = 178), where the data 
were randomly assigned as either training or validation subsets over 
a range of split ratios (training, validation): (90,10), (70,30), (50,50), 
(40,60), (30,70), (20,80), (15,85), and (10,90). In each case, the root-
average-squared-error (RASE) was calculated for both subsets as shown 
in Fig. 7a. A low training RASE relative its validation RASE is an indi-
cation of overfitting. The convergence of training and validation RASE 
values indicates higher confidence in the model, shown as “robust” in 
the figure.

The solid lines in Fig. 7a represent best-fit stretched-exponential 
trends of the holdout split RASE data, 𝑦𝑡𝑟𝑎𝑖𝑛 = 𝑦∞(1 − exp(−(𝑥∕𝑥∗)𝑚)), 
where 𝑦 is a proxy for RASE, 𝑦∞ = 0.0132, 𝑥∗ = 10.8%, and 𝑚 = 1.18. 
While there are no hard definitions of overfitting or robustness, the 
cross-validation results suggest reasonable limits can be proposed. In 
this case, overfitting is defined by 𝑦𝑡𝑟𝑎𝑖𝑛 < 0.95 ⋅ 𝑦∞, and robust fitting by 
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Fig. 7. Holdout validation: a) Root-Average-Squared-Error (RASE) and b) P-
ratio trends of parameter fits as functions of randomized splitting of training 
and validation data. Solid trendlines in (b) apply to geometric mean size; dashed 
lines apply to the geometric standard deviation.

𝑦𝑡𝑟𝑎𝑖𝑛 > 0.995 ⋅ 𝑦∞. A robust threshold of about 44% of 178 data points 
for an 11-parameter model (including the intercept) suggests a data/pa-
rameter ratio of at least about 7:1 for robust fitting of the current system.

In Fig. 7b, ensemble regression with distributed data increases the 
statistical significance of coefficients, especially those describing the 
breadth of said distributions. Conversely, as the fraction of distributed 
data used on model training is reduced, there is a trend toward reduced 
t-ratios of the fitting parameters. In the current work, t-ratios show rel-
atively stable behavior in the robust range, and show a significant drop-
off below the overfitting threshold.

4.  Results and discussion

Predictive models obtained from multi-effect regression were used 
to create contour maps for graphical display of size and shape distribu-
tions as a function of process and formulation inputs. The models are 
further employed with an iterative solver to suggest optimal conditions 
for producing uniform products within various operating constraints.

Contour maps were used to illustrate size and shape predictions in 
terms of inlet air flow, air temperature, and binder level (Figs. 8 and 
10, respectively). The masked areas of the contour maps indicate in-
effective operating conditions that were either too dry (peak product 
moisture < 7.5%) or too wet (peak product moisture > 11%) for the for-
mulations used in this study. In over-wet conditions, excessive moisture 
led to bed collapse and channeling, resulting in poor fluidization and 
uneven granule growth. In over-dry conditions, there was insufficient 
moisture for granule formation, resulting in excessive fines and dust. 
The unmasked areas indicate a stable balance between the spray rate 
and drying enthalpy for granulation, illustrated by the stable operating 
range (𝑆𝑂𝑅) in Fig. 1.

4.1.  Granule size mapping

An array of contour maps (Fig. 8) shows the effect of inlet air flow, air 
temperature, binder amount, and binder spray rate on the predicted ge-
ometric mean size, 𝑑𝑔𝑉 , and standard deviation, 𝜎𝑔 . The contour curva-
ture of the predicted 𝑑𝑔𝑉  comes from the interaction of temperature and 

Table 4 
Minimization of 𝜎𝑔 by model-based optimization of process parameters 
(airflow, 𝐴𝐹 , m3/h; slot temperature, 𝑇 , ◦C) as a function of binder con-
tent (dry-basis 𝑃𝑉 𝑃 ) and spray rate, 𝑆𝑅, of 25% binder solution, g/min.
    5% PVP  7% PVP
 𝑆𝑅 𝐴𝐹 𝑇 𝑑𝑔𝑉 𝜎𝑔 𝐴𝐹 𝑇 𝑑𝑔𝑉 𝜎𝑔  
  40  64  64  345  1.49 
  50  65  58  280  1.46  79  67  320  1.57 
  60  72  59  280  1.51  88  72  294  1.65 
  70  84  62  272  1.58  100  75  254  1.73 
  80  93  64  264  1.62  112  78  215  1.81 
  90  101  66  248  1.68

airflow on drying enthalpy. The individual interactions of the size dis-
tribution with temperature and airflow are also apparent but as straight 
[dashed] lines due to the lack of a statistically-significant three-way em-
pirical correlation between size 𝑐𝑃 , temperature, and airflow.

Note the Fig. 8 maps generated for 50 g/s spray rate (i.e., bottom 
row) are based on 5 of the 6 experimental runs, while the higher spray-
rate conditions rely on only one run (F) at 5% dry-basis PVP; hence, 
the maps on upper right are extrapolated from the model. Although 
a more thorough and balanced DOE should include a more represen-
tative distribution of experimental conditions, the ensemble regression 
model provides a reasonable prediction of a limited operating space at 
the high-high (upper right) condition. Indeed, balancing wetting and 
drying with an extended high spray rate can be challenging, hence the 
model-guidance of operating with higher drying enthalpy limits growth 
and narrowing of the size distribution.

4.2.  Optimization on size distribution

Notice that the narrowest distributions (i.e., minimizing 𝜎𝑔) occur at 
the wet 𝑆𝑂𝑅 limit. This observation suggests an approach to optimized 
mapping using a combination of binder addition parameters at the wet 
limit, for example assuming a fixed composition of binder and overlay-
ing contours representing various spray rates (Fig. 9), where the locus 
of points having the minimum 𝜎𝑔 represents an optimal set of spray-rate 
dependent process conditions. As the spray rate increases, the antici-
pated production benefit of reduced batch cycle time can be evaluated 
in context of the predicted change in granule growth and broadening of 
the size distribution along the optimized path (Table 4).

Airflow has multiple effects on the process, contributing to fluidiza-
tion, granulation dynamics, and drying. Combinations of airflow and 
temperature are necessary to provide drying enthalpy to the process, 
and are optimized by approaching the upper (wet) peak moisture limit. 
In addition to the minimum 𝜎𝑔 tangent at the wet peak moisture limit, 
where the slope of the tangent line depended on both airflow and 
temperature, the general trend of narrowing distributions favored en-
thalpies comprising lower airflow and higher temperature. Mechanisti-
cally, one can posit that the lower airflow provides more uniform mixing 
of the fluidized powder with the binder spray, avoiding excessive elu-
triation away from the spray zone.

4.3.  Granule shape mapping

Fluidized bed processing had measurable effects on granule shape, 
in some cases having an even higher statistical significance than size (t-
ratios, Table 3). Fig. 10 shows a shape map (𝑖𝐹𝐹 ) analogy of the center 
panel condition of the size maps in Fig. 8. The model trend shows more 
rounding and narrowing of the shape distribution with increasing peak 
moisture content, again with an optimum depending on a combination 
of process inputs. The thin-line contours show the tangent to the wet 
limit, suggesting an optimum condition for a narrow shape distribution. 
For reference, granule shapes corresponding to 𝑖𝐹𝐹  values are shown 
in Fig. 4.
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Fig. 8. Size maps showing effects of process and formulation parameters (inlet airflow, air temperature, binder amount, and binder spray rate) on the granule size 
distribution (𝑑𝑔𝑉 , 𝜎𝑔), where size is the area-equivalent diameter 𝑥𝐴, 𝜇𝑚, on a volume basis. The stable operating zone between over-dry and over-wet zones is defined 
by the enthalpy balance between the aqueous binder solution spray rate and moisture evaporation.

Fig. 9. Combined mapping of multiple spray rates, optimized for the minimum 
distribution breadth, 𝜎𝑔 , tangent to the wet enthalpy limit (11% product mois-
ture at the end of the spray segment).

Shape characterization is emerging as a practical capability and may 
become more relevant in context of its correlation with bulk properties 
such as granular flow, packing, compressibility, and dispersion/disso-
lution. The use of ensemble regression modeling, while empirical, may 
provide a useful tool for integrating shape into process control and op-
timization thinking.

5.  Perspective and outlook

In the current work, ensemble modeling combines regression of dis-
tributed product characteristics with process parameters. We chose flu-
idized bed granulation as a case study based on its complex process-
product interactions, where practical bounds on process parameters as-
sist the empirical modeling approach. The authors had the fortuitous 
opportunity to use pilot-scale FBG equipment having robust control and 
operational capabilities. Although pilot-scale trials require larger mate-
rial quantities, they provide greater confidence in manufacturing-scale 
operations. Clearly, it is an advantage to have confidence in process 
modeling of design spaces on a manufacturing-scale in the context of 
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Fig. 10. Mapping of granule shape distribution at 𝑃𝑉 𝑃 = 6% (dry mass ba-
sis) and 𝑆𝑅 = 60𝑔∕𝑚𝑖𝑛. The wet-limit tangent (narrow dashed line) indicates a 
narrow shape distribution, i.e., 𝜎𝑔 = 1.76, at 𝐴𝐹 = 82𝑚3∕ℎ and 𝑇 = 68◦𝐶.

limited pilot-scale data, motivating the case study shared in this work. 
This has practical utility, especially for industries where it is necessary 
to define a design space in a regulatory filing.

More broadly, recent work in ensemble regression modeling focuses 
on reducing uncertainty associated with individual models. Combining 
models as an ensemble is a strategy used across a wide range of appli-
cations and is consistent with the recent surge of interest in machine 
learning and artificial intelligence. Weighted linear regression is a foun-
dational method for supervised machine learning and has a long history 
in particulate systems, for example, ranging from workplace safety and 
aerosols (Hatch and Choate, 1929; Heintzenberg, 1994) to photographic 
film emulsions (Kottler, 1950), and the more recent focus on microplas-
tics in the environment (Schirrmeister et al., 2024). The ensemble mod-
eling approach described herein is broadly applicable to distributed sys-
tems where large data sets can be modeled using cumulative distribution 
functions.

In industrial powder processing, size and shape distributions affect 
flow and packing behavior, especially in contexts where particle body 
forces exceed cohesion (Mort, 2015; Sandler and Wilson, 2010). Addi-
tionally, there is an extensive legacy relating size and shape characteri-
zation with geophysics (Ulusoy, 2023). Combining ensemble regression 
tools with granular mechanics is a logical step forward.

6.  Conclusions

Geometric distributions are prevalent across particulate processing 
of chemicals, foods, pharmaceuticals and other products. Distributed 
particle size and shape features affect the stability and control of in-
dustrial processes including granulation, milling, crystallization, mix-
ing, handling, classification, and separations. It is common practice to 
describe such distributions by log-linear regression of binned data, for 
example using lognormal or Weibull distribution models. In this paper, 
we presented a case study using dynamic image analysis to character-
ize products made by fluidized bed granulation, using a limited number 
of pilot-scale process trials. Each product had a rich dataset compris-
ing large numbers of particle images that were analyzed and then con-
densed into quantile bins. Ensemble multi-effect regression combined 
the binned data with the process parameters of each trial to simultane-
ously solve for product distributions (e.g., lognormal geometric mean 
and standard deviation) as a function of process parameters.

In the fluid bed granulation case study, sparse process data were 
combined with rich product characterization to create statistically ro-
bust empirical models of granule size and shape distributions. Six 

process trials were included having airflow, air temperature, binder 
amount, and binder spray rate as independent parameters. Each product 
was characterized using dynamic image analysis, collecting and analyz-
ing on the order of 20k particle images per sample, which were con-
densed into ∼ 30 bins distributed according to cumulative distribution 
increments, both for size (𝑥𝐴) and shape (𝑖𝐹𝐹 ) features. The cumulative 
data were transformed to a cumulative probability function, 𝑐𝑝𝑓 , suit-
able for weighted linear regression analysis, said regression revealing 
strong statistical correlation of eleven fit parameters, six relating to the 
distribution geometric mean (𝑑𝑔𝑉 , 𝑖𝐹𝐹𝑔𝑉 ) and five relating to the geo-
metric standard deviation (𝜎𝑔). The resulting lognormal size model was 
combined with first-principal enthalpy constraints to map out a detailed 
design space, including some areas that were well represented by the 
experimental data and others that were extrapolated. Shape regression 
was enabled by using a modified form factor compatible with lognormal 
fitting. The shape model offers the potential for further insight detailing 
the design space.

Symbols

    Symbol(s)  Meaning  
  Fluid bed granulation (FBG)
  A,B,C,D,E,F  run identifiers  
 𝐴𝐹  airflow, m3/h  
 𝑇  slot temperature, ◦C  
 𝑃𝑉 𝑃  binder amount, dry basis, wt.%  
 𝑆𝑅  binder spray rate, g/min  
 𝑆𝑂𝑅  stable operating range, cumulative moisture 
 Regression data, distribution analysis

 𝑨,𝑩  matrices of regression coefficients  
 𝑐𝐹  cumulative fraction, data  
 𝑐𝑃  cumulative probability, data transform  
 𝑐𝑑𝑓  cumulative distribution function, fitted  
 𝑐𝑝𝑓  cumulative probability function, fitted  
 𝑥, 𝑦  scalar data values  
 𝑿,𝚫𝑿  matrix data, FBG process parameters  
 Size and shape, subscript 𝑉  denotes volume basis

 𝐴  projected area, image analysis  
 𝑑𝑔  geometric mean size  
 𝐹𝐹  form factor, 𝐹𝐹 = 4𝜋𝐴∕𝑃 2  
 𝑖𝐹𝐹  inverse form factor, 𝑖𝐹𝐹 = 1∕𝐹𝐹 − 1  
 𝜎𝑔  geometric standard deviation  
 𝑃  projected perimeter, image analysis  
 𝑥𝐴  area equivalent size, 𝑥𝐴 =

√

4𝐴∕𝜋  
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